Studies on the thermodynamic compatibility of blends of poly(vinyl chloride) and nitrile rubber

A. K. Sen* and G. S. Mukherjee

Defence Materials & Stores Research & Development Establishment, G.T. Road, Kanpur 208 013, India (Received 6 November 1991; revised 30 June 1992)

Inverse gas chromatography has been used to investigate the thermodynamic compatibility of blends of poly(vinyl chloride) (PVC) and nitrile rubber (NBR) as a function of blend composition and acrylonitrile (AN) content of NBR. The values of the polymer–polymer thermodynamic interaction parameters (χ'_{23} and B_{23}) and the solubility parameter (δ) of the polymers and their blends were determined with the help of the measured retention data for various polar and non-polar probes in the pure and mixed stationary phases of these polymers. Out of all the probes studied only dioxane and cyclohexanone have similar δ values to those of the blends. The B_{23} values for the PVC/NBR blends were ~ -0.1 and -1.1 cal ml⁻¹ depending on the AN content of NBR. Thus, the two polymers are fairly compatible and show increased compatibility with increase in AN content of NBR.

(Keywords: compatibility; inverse gas chromatography; thermodynamic interaction parameter; solubility parameter; glass transition temperature)

INTRODUCTION

Miscible blends of polymers are rare¹. This is because of the poor combinatorial entropy of mixing due to the high molecular weights of polymers. Miscibility in polymer-polymer mixtures has been the subject of considerable discussion and debate in the literature².

Miscibility is best understood in thermodynamic terms. Until recently there were a very limited number of techniques for critically and unambiguously examining the thermodynamics of polymer-polymer blends.

The molecular probe technique of gas-liquid chromatography, generally known as inverse gas chromatography (i.g.c.), reveals information about the polymeric stationary phase³⁻⁵. Recently, this method has proved popular because of its speed and convenience in providing thermodynamic data for concentrated polymer solutions⁶⁻⁸.

I.g.c. was first applied to estimate the thermodynamics of solvent-homopolymer interaction. Deshpande *et al.* have extended this technique for the determination of thermodynamic interaction between components of a mixture of a polymer and a non-polymeric compound⁹. Su *et al.* used this technique to measure the interaction parameter of poly(vinyl chloride) (PVC) and dioctyl phthalate as plasticizer to predict their compatibility¹⁰. Later, this study was successfully utilized to measure the compatibility of polymer blends. Some of the important blende studied were oligomeric polystyrene with poly(vinyl methyl ether)¹¹ and poly(n-butyl methacrylate)^{12,13}, poly(methyl methacrylate) with poly(vinylidene fluoride)¹⁴, PVC with poly(caprolactone), chlorinated polyethylene, acrylates and methacrylates^{3,15,16}, chlorinated polyethylene

2386 POLYMER, 1993, Volume 34, Number 11

with ethylene vinyl acetate copolymers^{17,18}, and poly(dimethylsiloxane) with tetracosane, dioctyl phthalate^{9,19} and styrene–dimethylsiloxane block copolymers²⁰. The various blends studied have been reviewed by Mandal *et al.*²¹ and Barashkov *et al.*¹.

From the above it can be seen that there has been no study on the compatibility of plastomers and elastomers using i.g.c. Such systems, particularly the PVC and nitrile rubber (NBR) blend, have immense technological importance^{22,23}. The polymer industry has been using PVC/NBR blends to achieve balances of properties, not possible with either of the polymers alone. The main advantages of the addition of PVC to an NBR stock are resistance to ozone and weathering, better gloss of extrudates and mouldings, bright colours, high abrasion resistance, fuel/oil resistance and creep resistance. In addition, optimum blending of NBR improves the toughness of PVC resin²². The PVC/NBR blend has been examined with the help of various analytical methods such as scanning electron microscopy²⁴. mechanical methods such as scaling electron incroscopy, mechanical methods²⁵, wide-angle X-ray diffraction²⁶ and pulsed n.m.r.²⁷. Such experiments by Nielson²⁸, Takayanagi *et al.*²⁹, Bohn³⁰ and Fukumori *et al.*²⁷ revealed a considerable degree of compatibility in the PVC/NBR blend system. It was, therefore, thought worthwhile to study the compatibility of this system by measuring the interaction parameters using i.g.c.

We report in this paper the results of i.g.c. measurements on PVC and NBR as constituents of binary stationary phases with various probes of different polarities. The results are discussed on the basis of Flory-Huggins thermodynamic interaction parameters, such as χ_{12} , χ_{13} and χ'_{23} , measuring the respective interactions between

^{*} To whom correspondence should be addressed

^{0032-3861/93/112386-06}

^{© 1993} Butterworth-Heinemann Ltd.

the solvent probe and PVC and NBR and that between PVC and NBR normalized to probe size.

Several authors have observed that the interaction parameter values obtained by i.g.c. are probe dependent. Consequently, an average value was used to estimate compatibility¹⁰⁻²¹. Munk *et al.*^{31,32} have, however, criticized this approach and have used a different technique. In the present paper, the evaluation of the interaction parameter (B_{23}) using the analytical form of Munk has been applied to estimate compatibility.

EXPERIMENTAL

PVC grade 613 (Calico Plastics, Bombay, India) was used without purification. The molecular weight (\overline{M}_n) and polydispersity $(\overline{M}_w/\overline{M}_n)$, as determined by g.p.c., were 98 000 and 1.65, respectively, and the glass transition temperature (T_g) measured by d.s.c. was 76.3°C. The d.s.c. measurements were carried out in a nitrogen atmosphere (flow rate 40 ml min⁻¹) at a heating rate of 10°C min⁻¹ using a DuPont instrument with 910 module.

NBR samples, Perbunan N2807 and Perbunan N3307, with 28% and 34% acrylonitrile (AN), respectively, were received from Bayer (India) Ltd, Bombay, India. They are subsequently referred to as NBR-28 and NBR-34. Both the NBR samples had the same \overline{M}_n (1.1 × 10⁵, by g.p.c.). The $\overline{M}_w/\overline{M}_n$ values for NBR-28 and NBR-34 were 1.00 and 1.04, respectively.

The solvents were of analytical grade. An Aimil Nucon 5700 (Nucon Engineers, India) dual column gas chromatograph with a thermal conductivity detector was used. The temperature was measured using a standard thermometer with an accuracy of 0.5°C. The solid support was chromosorb WAW (dimethyl chlorosilane (DMCS) treated). Both the polymers were soluble in methylene dichloride and their mixture in any ratio produced a clear solution. The polymer or its mixture was coated on the solid support by the soaking method of Al-Saigh and Munk³¹. The requisite quantity of polymer or its mixture was dissolved in methylene dichloride. A small portion of the solution was then poured over a pile of solid support on a watch glass, just to wet the solid completely. The wetted solid was dried by stirring. This procedure was repeated several times till all the solution (including rinsing of the sample tube) had been used. The coated solid was finally air and vacuum dried. There was thus negligible loss of polymer due to its sticking to the surface of the vessel. The polymer loading on solid support was $\sim 10\%$ and was cross-checked by calcination. The coated solid was packed in $2.5 \text{ m} \times 3 \text{ mm}$ i.d. stainless steel columns. The columns were conditioned at 80° C for ~4 h.

The inlet column pressure was measured by a mercury manometer near the inlet. The column outlet pressure was taken as atmospheric. Ultra-pure hydrogen was used as the carrier gas. The flow of the carrier gas was $6.5-7.5 \text{ ml s}^{-1}$. The quantity of solvent (probe) injected varied from 0.01 to 0.1 μ l. Other experimental details and the method of calculating the retention volume (V_R) have been described previously³³. The corrected V_R of the probe was calculated using the method of Newman and Prausnitz³⁴. In order to eliminate the contribution of the solid support, V_R was calculated at the outset using a column containing blank support only. The weight of material packed in each polymer-coated support column was such that the weight of solid support always remained the same as that in the blank support column. The V_R of the solid support was then subtracted from the $V_{\rm R}$ of the polymer-coated column and the corrected specific retention volume ($V_{\rm g}$) determined. The limit of accuracy was $\pm 0.5\%$.

Besides pure PVC and NBR-28 and NBR-34, blends containing 25, 50 and 75% PVC were used. The total polymer content in each column was ~ 0.25 g and in the solid support 2.5 g. The probes used were of diverse polarity and included n-octane, n-nonane, n-decane, benzene, toluene, *o*-xylene, butyl acetate (BA), tetrahydro-furan (THF), methyl ethyl ketone (MEK), ethylene dichloride (EDC), dioxane and cyclohexanone.

The experiments were carried out at 130°C. This temperature was chosen because temperatures 50–60°C above the T_g were required. This temperature has been used by many authors for PVC using the i.g.c. technique^{10,15}. PVC is essentially amorphous and in our calculation we have assumed PVC to be totally amorphous. The solvent probe interacts only with the amorphous region of the polymer. A correction for percentage crystallinity would lower the values of χ_{12} and χ'_{23} further.

The T_g values of the pure polymers and their blends were determined from plots of log V_g versus 1/T using n-octane as the probe^{33,35}.

DATA REDUCTION

Interaction parameters

From the Flory-Huggins treatment of solution thermodynamics^{36,37}, the interaction parameter χ_{1i} between the solvent and polymer was calculated from the following equation^{6,9}:

$$\chi_{1i} = \frac{\ln 273.15 R v_{isp}}{P_1^{\circ} V_g^{\circ} V_1} - \frac{P_1^{\circ} (B_{11} - V_1)}{RT} - \left(1 - \frac{V_1}{V_2}\right) \phi_2 \quad (1)$$

From Scott's ternary solution treatment³⁸ of the Flory–Huggins theory, the overall interaction parameter between the probe (1) and the binary stationary polymer phase (2-3) was calculated using:

$$\chi_{1(23)} = \frac{\ln 273.15R(w_2 v_{2sp} + w_3 v_{3sp})}{P_1^{\circ} V_{g23}^{\circ} V_1} - \frac{P_1^{\circ}(B_{11} - V_1)}{RT} - 1$$
$$= \left(\frac{\chi_{12}}{V_1}\phi_2 + \frac{\chi_{13}}{V_1}\phi_3 - \frac{\chi_{23}}{V_2}\phi_2\phi_3\right)V_1$$
(2)

$$\chi'_{23} = \frac{\chi_{23}V_1}{V_2} = \frac{\chi_{12}}{\phi_3} + \frac{\chi_{13}}{\phi_2} - \frac{\chi_{1(23)}}{\phi_2\phi_3}$$
(3)

where w_i , ϕ_i and v_{isp} represent the weight fraction, volume fraction and specific volume of the respective polymer. B_{11} , P_1° and V_1 are the second virial coefficient, the vapour pressure and the molar volume of the solvent, respectively, at the column temperature. The densities and the above parameters of the desired components were calculated or obtained from the literature^{34,38-45}. The calculation of χ'_{23} represents the polymer–polymer interaction parameter normalized to the size of the probe, and χ_{23} is based on the size of a polymer molecule. The interaction parameter B_{23} , as expressed by equation (4), has also been evaluated:

$$B_{23} = \frac{RT\chi'_{23}}{V_1}$$
(4)

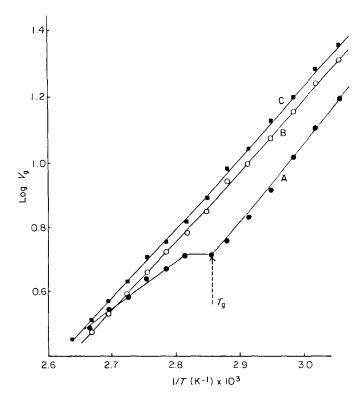


Figure 1 Retention diagram for n-octane as molecular probe with: (A) PVC; (B) 50:50 PVC/NBR-34; (C) 50:50 PVC/NBR-28

Solubility parameter

The solubility parameter (δ) was determined from the relation obtained by combining the Hildebrand–Scatchard solution theory⁴⁶ with Flory's theory^{47,48} giving the following equation:

$$\left(\frac{\delta_1^2}{RT} - \frac{\chi}{V_1}\right) = \left(\frac{2\delta_2}{RT}\right)\delta_1 - \left(\frac{\delta_2^2}{RT} + \frac{\chi_s}{V_1}\right)$$
(5)

where δ_1 and δ_2 are the solubility parameters of the probe and polymer, respectively, and χ_s is the excess entropy term for the polymer.

Based on the regression analysis, δ_2 was evaluated from the slope of a plot of $\left(\frac{\delta_1^2}{RT} - \frac{\chi}{V_1}\right)$ versus δ_1 , assuming δ_2 to be constant for all probes.

The δ_1 values for the volatile probes were determined from the calculated data of the heat of vaporization of the probe^{43,48}.

RESULTS AND DISCUSSION

Glass transition temperature

The T_g of pure PVC, as estimated from the point of inflection in the log V_g versus 1/T plot, was 77°C. The i.g.c.-estimated T_g agrees well with that estimated for PVC by d.s.c. (76.3°C, see Figure 1) and that reported in the literature⁴⁹. In the case of PVC/NBR blends, the inflection was much less marked and the curves were similar. For pure NBR the plots were, however, linear as was expected since the experiments were carried out above the ambient temperature. No significant information regarding compatibility of the blends could be obtained from the T_g data. Typical log V_g versus 1/T plots of 50:50 PVC/NBR-28 and 50:50 PVC/NBR-34 are given in Figure 1 together with that of pure PVC. The

 T_{g23} of the blends was evaluated from theory using the Flory-Fox relationship^{50,51} as well as from experiment using d.s.c. The Fox relationship is expressed by:

$$\frac{1}{T_{g23}} = \frac{W_2}{T_{g2}} + \frac{W_3}{T_{g3}} \tag{6}$$

Table 1 shows the T_g values of the polymers and their blends. It appears from Table 1 that the Flory-Fox relationship for glass transition is also generally applicable to PVC/NBR systems.

Specific retention volume

The specific retention volume (V_g°) has been measured for a number of probes in pure and mixed stationary phases containing PVC and NBR.

A qualitative method of measuring the interaction between the components of the blend has been used by DiPaola-Baranyi *et al.* using the following expression¹²⁻¹⁴:

$$V_{g23}^{\circ} = w_2 V_{g2}^{\circ} + w_3 V_{g3}^{\circ} \tag{7}$$

where w_i refers to the weight fraction of each polymer in the blend. A negative deviation from linearity has been interpreted as highly interacting^{14,32} because if two polymers interact with one another then it will reduce the ability of the blend to interact with the solvent, and hence the retention volume for the blend will be smaller than the weight average of the retention volumes for the two polymers at the corresponding composition²¹. In our experiment such deviations generally decrease with increasing proportion of NBR in the blend (*Table 2*). Thus, in the present study, the estimated deviation of

 Table 1
 Glass transition temperatures of the polymers and their blends

	- T _g		
	Theoretical ^a	Experimental ^b	
PVC		76.3	
NBR-34		-23.1	
NBR-28		-29.8	
75:25 PVC/NBR-34	43.9	45.0	
50:50 PVC/NBR-34	18.8	20.7	
25:75 PVC/NBR-34	-3.5	- 4.0	
75:25 PVC/NBR-28	42.0	41.1	
50:50 PVC/NBR-28	13.5	8.8	
25:75 PVC/NBR-28	-9.6	- 5.0	

^a From the Flory-Fox relationship

^b From d.s.c.

Table 2 Percentage deviation from the theoretical V_{g23}° based on equation (7) at 130°C

Probe	PVC/NBR-28			PVC/NBR-34		
	75:25	50:50	25:75	75:25	50:50	25:75
Octane	29.2	17.0	11.6	31.2	20.0	12.7
Nonane	51.5	39.4	31.6	13.7	9.0	8.7
Decane	20.1	15.7	10.9	11.6	4.4	3.9
Benzene	10.0	7.7	3.4	13.4	9.3	3.3
Toluene	10.4	8.8	4.7	4.9	8.1	3.7
o-Xylene	12.8	10.8	7.9	6.8	9.9	3.4
EDC	6.9	5.0	2.9	3.3	2.0	0.00
THF	6.1	5.6	3.1	5.0	1.3	2.9
MEK	14.8	9.2	7.8	3.4	2.7	0.00
BA	9.1	7.4	1.5	5.7	8.7	3.7
Dioxane	0.007	-1.1	-2.5	1.17	0.007	0.00
Cyclohexanone	5.2	4.1	1.2	1.27	-0.31	-0.33

Table 3 Thermodynamic interaction parameter (χ_{1i}) for solvent and single polymer systems at 130°C

	X 1 2	χ	13	$ \Delta \chi = \chi_{12} - \chi_{13} $	
Probe	PVC	NBR-28	NBR-34	NBR-28	NBR-34
n-Octane	1.45 (1.55) ^a	0.77	1.05	0.68	0.40
n-Nonane	(1.55) 1.52 $(1.61)^a$	0.89	1.06	0.63	0.46
n-Decane	(1.61) 1.56 (1.64) ^a	0.91	1.20	0.65	0.36
Benzene	0.13	-0.12	-0.10	0.25	0.23
Toluene	0.12	-0.13	-0.07	0.25	0.19
o-Xylene	0.11	-0.10	-0.07	0.21	0.18
EDC	-0.68	-0.93	-0.93	0.25	0.25
THF	-0.10	-0.11	-0.08	0.01	0.02
MEK	0.06	0.15	-0.06	0.09	0.00
BA	0.20	0.07	0.19	0.13	0.01
Dioxane	-0.07	-0.02	-0.07	0.05	0.00
Cyclohexanone	-0.28	-0.14	-0.19	0.14	0.09

"Values in parentheses are obtained from ref. 10

Table 4 Polymer-polymer thermodynamic interaction parameters $(\chi'_{23} \text{ and } B_{23})$ at 130°C for different polymer blend ratios (w/w)

	X'23	of PVC/N		D	
Probe	75:25	50:50	25:75	X'23 ^a	$\frac{B_{23}}{(\operatorname{cal} \operatorname{ml}^{-1})}$
n-Octane	1.09	0.71	0.82	0.87	3.70
n-Nonane	1.59	1.32	1.01	1.31	5.09
n-Decane	1.04	0.81	0.89	0.91	3.28
Benzene	0.46	0.34	0.25	0.35	2.72
Toluene	0.47	0.38	0.34	0.39	2.61
o-Xylene	0.56	0.45	0.54	0.52	3.03
EDC	0.30	0.19	0.13	0.21	1.65
THF	0.26	0.23	0.21	0.23	1.96
MEK	0.77	0.63	0.53	0.64	4.86
BA	0.40	0.31	0.11	0.27	1.43
Dioxane	0.07	0.04	0.02	0.04	0.35
Cyclohexanone	0.23	0.18	0.08	0.16	1.11

^a Averaged over all blend compositions

 V_{g}° appears to indicate qualitatively the composition dependency of the compatibility of the blend (*Table 2*).

Solvent-polymer interaction

Table 3 presents the interaction parameters χ_{12} (probe PVC), χ_{13} (probe NBR) and $|\Delta\chi| = |\chi_{12} - \chi_{13}|$. From Table 3 it appears that the relative order of interaction between the various probes and either of the nitrile rubbers remains more or less unaltered. According to Patterson⁵² the compatibility of polymers in solution should reflect not only the interaction between the polymers themselves, i.e. χ'_{23} , but also any difference between the interaction of the polymers with the solvent as represented by $\Delta\chi = |\chi_{12} - \chi_{13}|$. Moreover, the interaction parameter χ_{1i} is related to the solubility parameters^{2,3,53} by the equation:

$$\chi_{1i} = \frac{V}{RT} (\delta_1 - \delta_i)^2 \tag{8}$$

A lower value of $\Delta \delta = (\delta_1 - \delta_i)$ is favourable for compatibility^{53,54}. Table 3 indicates that the $\Delta \chi$ value in the case of NBR-34 is lower than that of NBR-28 indicating a greater tendency for compatibility of PVC with NBR-34 than with NBR-28 in solution.

PVC-NBR interaction

The χ'_{23} values of the polymers and their blends are given in Tables 4 and 5. It is apparent that the interaction parameter is highly probe dependent as observed in most studies $^{1,9-21,31,32,55}$. Several authors 10,21 have taken the interaction parameter from the average values corresponding to the probes which interact similarly with both polymers, i.e. for which $|\Delta \chi|$ is low $(\Delta \chi \rightarrow 0)$, to adjudge the compatibility. For example, Nandi et al. obtained an average χ'_{23} value of 0.25 for a miscible blend of 75% poly(methyl acrylate) with 25% poly(vinyl acetate)⁵⁶. DiPaola-Baranyi observed a positive χ'_{23} average value in the range 0.03-0.43 for a miscible blend of low molecular weight polystyrene with poly(nbutyl methacrylate) in different proportions^{12,37}; the same author also reported an average χ'_{23} value of 0.2 for a miscible blend of 25% poly(vinylidene fluoride) with poly(methyl methacrylate)¹⁴. Tyagi et al. reported a similar average χ'_{23} value for compatible blends of poly(vinyl acetate) and poly(n-butyl methacrylate)⁵⁸.

El-Hibri *et al.*³², however, have evolved another method of selecting the probe for a more accurate evaluation of the interaction parameter to interpret compatibility. It has been argued that the probe which possessed the nearest solubility parameter to that of the blend is the most appropriate and the value of χ'_{23} obtained from that probe should be used to interpret thermodynamic compatibility³².

The estimation of the solubility parameter (δ_2) of the stationary phase was done by regression analysis as outlined in the Experimental section. The calculated solubility parameter for the probes (δ_1) at 130°C is shown in *Table 6*. The δ_2 values obtained for the homopolymer, copolymer and their blends are summarized in *Table 7*. The average solubility parameters $(\overline{\delta}_2)$ for PVC/NBR-28 and PVC/NBR-34 are 8.35 and 8.60, respectively. In this study, from all the probes, only dioxane $(\delta_1 = 8.21)$ and cyclohexanone $(\delta_1 = 8.83)$ have similar solubility parameters to those of the blends. Consequently, the solvents for estimating χ'_{23} for PVC/NBR-28 and PVC/NBR-34 are dioxane and cyclohexanone, respectively.

From Tables 4 and 5 it can be seen that χ'_{23} varies from 0.07 to 0.02 for PVC/NBR-28 and from 0.06 to -0.02 for PVC/NBR-34. Since the values are close to zero, the blends may be considered as practically compatible. The increase of compatibility with NBR and

Table 5 Polymer-polymer thermodynamic interaction parameters $(\chi'_{23} \text{ and } B_{23})$ at 130°C for different polymer blend ratios (w/w)

	χ'23	of PVC/NE		2	
Probe	75:25	50:50	25:75	$\chi'_{23}{}^a$	B_{23} (cal ml ⁻¹)
n-Octane	1.00	0.84	0.76	0.87	3.67
n-Nonane	0.20	0.40	0.35	0.32	1.23
n-Decane	0.58	0.25	0.32	0.38	1.38
Benzene	0.61	0.39	0.24	0.41	3.22
Toluene	0.23	0.35	0.26	0.28	1.84
o-Xylene	0.31	0.41	0.24	0.32	1.88
EDC	0.18	0.12	0.06	0.12	0.96
THF	0.22	0.05	0.20	0.16	1.32
MEK	0.15	0.11	0.01	0.09	0.68
BA	0.25	0.35	0.25	0.28	1.48
Dioxane	0.05	0.03	0.01	0.03	0.25
Cyclohexanone	0.06	-0.01	-0.02	0.01	0.07

^a Averaged over all blend compositions

Table 6 Solubility parameter of the probes (δ_1) used to calculate the polymer solubility parameter (δ_2) at 130°C

Probe	δ_1 (cal ^{1/2} cm ^{-3/2})	$\frac{V_1}{(\text{cm}^3 \text{ mol}^{-1})}$	
n-Octane	6.16	188.26	
n-Nonane	6.34	204.85	
n-Decane	6.45	221.88	
Benzene	7.47	102.46	
Toluene	7.44	121.28	
o-Xylene	7.71	136.02	
EDC	7.08	99.90	
THF	7.53	95.00	
MEK	7.43	105.62	
BA	7.05	152.68	
Dioxane	8.21	97.63	
Cyclohexanone	8.83	117.46	

Table 7 Solubility parameter of the polymers and their blends (δ_2 , cal^{1/2} cm^{-3/2}) at 130°C

Polymer	δ_2	PVC/NBR-28	δ_2	PVC/NBR-34	δ_2
PVC	8.70	75:25	8.47	75:25	8.69
NBR-34	8.51	50:50	8.33	50:50	8.59
NBR-28	8.22	25:75	8.22 (8.35) ^a	25:75	8.51 (8.60) ^a

^a Average value in parentheses

AN content is also apparent. This conclusion can also be drawn from the solubility parameter data^{2,53,54} presented in Table 7. The method of Munk et al. thus appears to be more precise since PVC/NBR is a well known commercial blend^{2,22,24,59,60}.

Interaction parameter

Munk has utilized the term interaction parameter (B_{23}) to explain the compatibility phenomenon of polymers³². The B_{23} for each probe has been calculated using equation (4) and the average B_{23} values are embodied in Tables 4 and 5 for PVC/NBR-28 and PVC/NBR-34, respectively. As per the analytical approach of Munk, the apparent B_{23} values in Tables 4 and 5 can be plotted against the δ_1 values for the 12 probes studied. From such plots, the respective B_{23} values for PVC/NBR-28 and PVC/NBR-34 corresponding to their solubility parameters (i.e. $\overline{\delta}_2 = 8.35$ and 8.60) have been obtained (-0.1 and -1.1 cal ml⁻¹, respectively). These values of intrinsic B_{23} interaction energy for a blend show a moderate level of compatibility between the polymers. This is in agreement with the recent report by Fukumori et al.27.

CONCLUSIONS

I.g.c. studies on PVC/NBR blends based on the evaluation of the thermodynamic interaction parameters χ'_{23} and B_{23} suggest that PVC/NBR blends are fairly compatible through weak interaction and the compatibility increases with increase in AN content (at least up to 34% AN) in the NBR.

ACKNOWLEDGEMENT

The authors are grateful to Dr S. N. Pandey, Director, DMSRDE, Kanpur for encouragement and for allowing them to publish their results.

REFERENCES

- 1 Barashkov, O. K. and Barshtein, R. S. Polvm. Sci. USSR 1988, 4,686
- 2 Paul, D. R. and Newman, S. (Eds) 'Polymer Blends', Academic Press, New York, 1978; Polym. Eng. Sci. 1982, 22, 137
- Olabisi, O. Macromolecules 1975, 8, 316 3
- Guillet, J. E. J. Macromol. Sci. Chem. 1970, 4, 1669 4
- 5 Guillet, J. E. 'Progress in Gas Chromatography' (Ed. J. H. Purnell), Wiley-Interscience, New York, 1973, p. 187
- 6 Braun, J. M. and Guillet, J. E. Adv. Polym. Sci. 1976, 21, 108 7 Gray, D. G. Progr. Polym. Sci. 1977, 5, 1
- 8 Smidsrod, O. and Guillet, J. E. Macromolecules 1969, 2, 272
- 9 Deshpande, D. D., Patterson, D., Schreiber, H. P. and Su, C. S. Macromolecules 1974, 7, 530
- Su, C. S., Patterson, D. and Schreiber, H. P. J. Appl. Polym. Sci. 10 1976, 20, 1025
- Su, C. S. and Patterson, D. Macromolecules 1977, 10, 708 11
- 12 DiPaola-Barayni, G. and Degre, P. Macromolecules 1981, 14, 1456
- DiPaola-Barayni, G. Macromolecules 1981, 14, 683 13
- DiPaola-Barayni, G., Fletcher, S. J. and Degre, P. Macromolecules 14 1982, 15, 885
- 15 Walsh, D. J. and Mckeown, J. G. Polymer 1980, 21, 1335
- Doube, C. P. and Walsh, D. J. Eur. Polym. J. 1981, 17, 63 16
- Walsh, D. J., Higgins, J. S. and Rostami, S. Macromolecules 17 1983. 16. 388
- 18 Walsh, D. J., Higgins, J. S., Rostami, S. and Weeraperuma, K. Macromolecules 1983, 16, 391 Ward, T. C., Sheehy, D. P., Riffle, J. S. and McGrath, J. E.
- 19 Macromolecules 1981, 14, 1791
- 20Galin, M. and Rupprecht, M. S. Macromolecules 1979, 12, 506 Mandal, B. M., Bhattacharya, C. and Bhattacharya, S. N. Macromol. Sci. Chem. 1989, 426, 175 21
- 22 Blow, C. M. (Ed.) 'Rubber Technology and Manufacture', Newness-Butterworths, London, 1971
- Schwarz, H. F. and Edwards, W. S. Appl. Polym. Symp. 1974, 23 25. 243
- Matsuo, M., Nozaki, C. and Jyo, Y. J. Electronmicrosc. 1968, 17, 1 24
- Landi, V. R. Appl. Polym. Symp. 1974, 25, 223 25
- Inoue, T., Yasuda, O., Kobayashi, T., Hashimoto, T. and Miyasaka, K. Polym. Prepr. Jpn 1982, **31**, 2549 26
- 27 Fukumori, K., Sato, N. and Kurauchi, T. Rubber Chem. Technol. 1991. 64. 522
- 28 Nielson, L. E. J. Am. Chem. Soc. 1953, 75, 1435
- Takayanagi, M., Harima, H. and Iwata, Y. Mem. Fac. Eng. 29 Kvushu Univ. 1963, 23, 1
- Bohn, L. Rubber Chem. Technol. 1968, 41, 495 30
- Al-Saigh, Z. Y. and Munk, P. Macromolecules 1984, 17, 803 31
- El-Hibri, M. J., Cheng, W. and Munk, P. Macromolecules 1988, 32 21, 3458
- Sen, A. K. and Kumar, R. J. Appl. Polym. Sci. 1988, 36, 205 33
- Newman, R. D. and Prausnitz, J. M. J. Paint Technol. 1973, 45, 33 34
- 35 Sanetra, R., Kolarz, B. N. and Wlochowicz, A. Polymer 1985, 26, 1181
- Flory, P. J. J. Chem. Phys. 1941, 9, 660 36
- 37 Huggins, M. L. J. Chem. Phys. 1941, 9, 440
- Scott, R. L. J. Chem. Phys. 1949, 17, 279 38
- 39 Washburn, E. W. (Ed.) 'International Critical Tables', Vol. 3, McGraw-Hill, New York, 1928
- 40 O'Connel, J. P. and Prausnitz, J. M. Ind. Eng. Chem. Proc. Des. Dev. 1967, 6, 245
- Bondi, A. J. Phys. Chem. 1964, 68, 441 41
- Dreisbach, D. R. Adv. Chem. Ser. 1955, No. 15; 1959, No. 22; 42 1961, No. 29
- 43 Orwoll, R. A. and Flory, P. J. J. Am. Chem. Soc. 1967, 89, 6814
- 44 Timmermans, J. 'Physico-Chemical Constants of Pure Organic Compounds', Vols 1 and 2, Elsevier, New York, 1950 and 1965
- Saltman, W. M. in 'Encyclopedia of Polymer Science and Technology' (Eds H. F. Mark, N. G. Gaylord and N. M. Bikales), 45
- Vol. 2, Wiley-Interscience, New York, 1971, p. 678 Hildebrand, J. H. and Scott, R. L. 'The Solubility of Non Electrolytes', 3rd Edn, Reinhold, New York, 1950 46
- Flory, P. J. 'Principles of Polymer Chemistry', Cornell University 47 Press, Ithaca, 1953
- DiPaola-Baranyi, G. Macromolecules 1982, 5, 622 48
- Brighton, C. A., Marks, G. C. and Benton, J. L. in 'Encyclopedia of Polymer Science and Technology' (Eds H. F. Mark, 49 N. G. Gaylord and N. M. Bikales), Vol. 14, Wiley-Interscience, New York, 1971, p. 360

- Fox, T. G. Bull. Am. Chem. Soc. 1956, 1, 123 Wood, L. A. J. Polym. Sci. 1958, 28, 319 50 51
- Zeman, L. and Patterson, D. Macromolecules 1972, 5, 513 52
- Coleman, M. M., Serman, C. J., Bhagwagar, D. E. and Painter, P. C. Polymer 1990, 31, 1187 53
- 54 Valle, L. R. and Gilbert, M. Plast. Rubber Proc. Appl. 1990, 13, 151
- 55 Sen, A. K. and Mukherjee, G. S. 'Polymer Science' (Ed.

S. Sivaram), Vol. 2, Tata-McGraw Hill, New Delhi, 1991, p. 603 Nandi, A. K., Mandal, B. M. and Bhattacharya, S. N. *Macromolecules* 1985, **18**, 1454 56

- 57 DiPaola-Baranyi, G. Am. Chem. Soc. Div. Polym. Chem. Prepr. 1980, 21, 214
- 58 Tyagi, O. S. and Hussain, S. Ind. J. Technol. 1984, 22, 435
- Matsuo, M. Polym. Eng. Sci. 1969, 9, 197 59
- 60 Tager, A. 'Physical Chemistry of Polymers', Mir, Moscow, 1978